NEW YORK CITY DEPARTMENT OF DESIGN + CONSTRUCTION IN PARTNERSHIP WITH THE NEW YORK CITY DEPARTMENT OF PARKS & RECREATION AND THE MAYOR'S OFFICE OF RECOVERY & RESILIENCY

EAST SIDE COASTAL RESILIENCY:

PROJECT AREA TWO FEASIBILITY STUDY AND DESIGN CRITERIA

PROJECT ID. SANDRESM1 APRIL 8, 2015

Overview

East Side Coastal Resiliency Overview

Key Issues and Decisions

Challenges and Constraints

Review of Project Area Two Feasibility Study

Summary of Estimated Costs

Next Steps

East Side Coastal Resiliency Overview

EAST SIDE COASTAL RESILIENCY - STUDY AREA LOCATION MAP

Department of Transportation

PROJECT ID: SANDRESM1 Task No.1: Feasibility Study and Pre-Scoping Services for East Side Coastal Resiliency

East Side Coastal Resiliency Project Goals

Design Flood Protection Measures which:

- Meet HUD *Rebuild by Design* funding requirements
- Increase Protection against Coastal Flooding and Sea Level Rise
- Create Vibrant Urban Spaces through Resiliency Investment
- Allow for Future Enhancements to the Protection System
- Increase Community Resiliency
- Improve Access to the Park and East River Waterfront
- Meet Project Capital Budget and Implementation requirements

Project Challenges

Storm Event Design Criteria (Surge and Rainfall)
Interceptor Flooding
MGP Contamination
Project Area One and Two Constraints
Cost/Budget Implications

Challenges and Constraints: Flood Event Design Criteria

Gain Consensus on Design Criteria for Project Areas One and Two

- 100-year surge (1% annual chance of occurrence) or 500-year surge (0.2% annual chance of occurrence) for Project Areas One and Two
- Sea Level Rise (SLR) in accordance with New York City Panel on Climate Change (NPCC) 2015 Report
 - 2050s or 2100 SLR
 - Low estimate, middle range, or high estimate projections
 - Address SLR with adaptability in design
- Wave Overtopping

Challenges and Constraints: Study Area - Interior Drainage

Need Confirmation of Design Criteria:

 Return Rainfall Event

Meeting with DEP (4/16) to discuss:

- Out-of-Study-Area Flooding Mitigation Approach
- Pumping/ Conveyance Options
- Duration of Closure

Challenges and Constraints: MGP Contamination

MGP contamination anticipated from 20 feet below grade

Additional project cost to be reimbursed by Con Edison

Challenges and Constraints: MGP Contamination

MGP contamination anticipated from 5 to 10 feet below grade

Additional project cost to be reimbursed by Con Edison

Challenges and Constraints: Project Area One

Limited Viable Alignments for Protection Measures Existing Park Features Williamsburg Bridge Security Emergency Access Road Con Edison Transmission Line

Challenges and Constraints: Project Area Two

Con Edison East River Generating Station Con Edison Transmission Line Captain Patrick J. Brown Walk Platform FDR Drive Elevated FDR Drive

Stuyvesant Cove Park

Project Area Two Feasibility

Feasibility Study Purpose

 Build upon the "BIG U" Rebuild by Design Proposal and initiatives to develop understanding of feasibility of flood protection measures in Project Area Two

Feasibility Study Goal

 Develop at least one technically feasible alternative for providing flood protection for 2050s 500-year flood event within the available capital budget

Feasibility Outcome

- Three technically feasible configurations of alternatives were developed:
 - Lowest Cost
 - Highest Reliability
 - Greatest Urban Design Potential
- Cost Range \$150 million to \$230 million

Feasibility Scope and Approach

The Design Criteria is the First Critical Step that will Drive the Development of Alternatives and Costs in both Project Area One and Project Area Two

Feasibility Scope and Approach

Project Area Two Overview: Reach A through E

Feasibility Scope and Approach Key Design Requirements

Apply Design Criteria (2050s/500-Year Flood Event)

Feasibility Study design requirements include:

- Design for 2050s 500-year flood event
- Prevent surge from entering the system and control wave overtopping
- Analyze and develop alternatives to manage interior drainage
- Design resiliency into the system such that surge events exceeding design do not result in catastrophic failure

Basis of Design Elevation: Storm Surge and Hydraulics

Apply Design Criteria (2050s/500-Year Flood Event)

Sea Level Rise	2015		2050s		2100			
Surge Event	2015	10 th Percentile (8 in.)	50 th Percentile (16 in.)	90 th Percentile (30 in.)	10 th Percentile (15 in.)	50 th Percentile (36 in.)	90 th Percentile (75 in.)	
500-year	13.9ft	14.6ft	15.2ft	16.5ft	15.2ft	16.9ft	20.2ft	
100-Year	10.9ft	11.6ft	12.2ft	13.4ft	12.2ft	13.9ft	17.2ft	

Notes:

- 1. Sea Level Rise Projections taken from the NPCC 2015 Report.
- 2. All elevations shown in NAVD88 datum.
- 3. Elevations shown do not include wave overtopping which adds 1.5ft to 4ft to the elevation of the flood protection measures.

Basis of Design Elevation: Storm Surge and Hydraulics

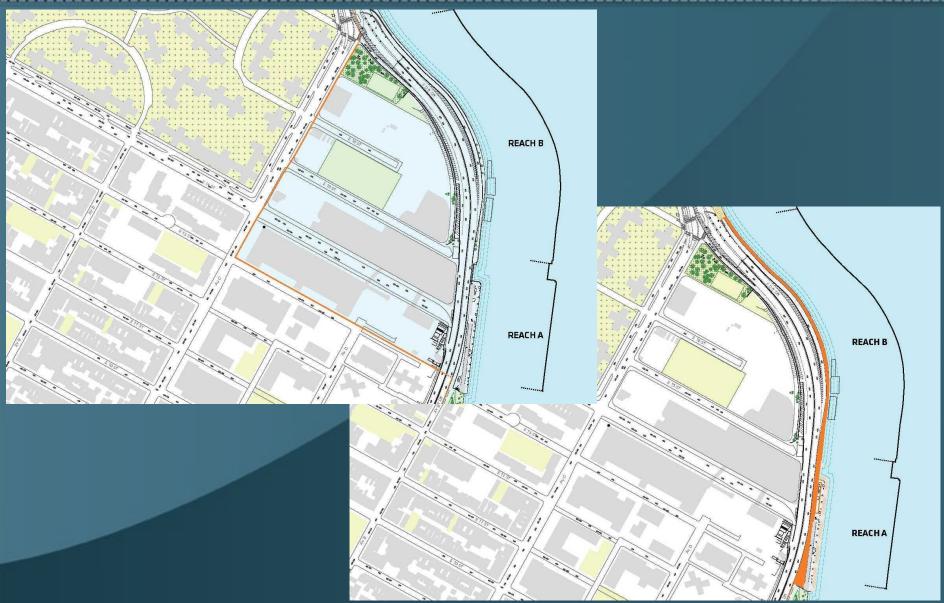
Apply Design Criteria (2050s/500-Year Flood Event)

Feasibility Design Criteria Summary

- FEMA Preliminary FIRM 500-Year Flood Elevation = +13.9ft NAVD88
- NPCC 2050s 90th Percentile SLR = 30in.
 - 500 year Flood Elevation + SLR = +16.5ft NAVD88
- FEMA Preliminary FIRM Storm Induced Waves = 1.5ft to 4ft
 - 500-year Flood Elevation + SLR + Storm Induced Waves = +18ft to +21ft NAVD88
- Elevation used for Feasibility Study = +20.0ft NAVD88

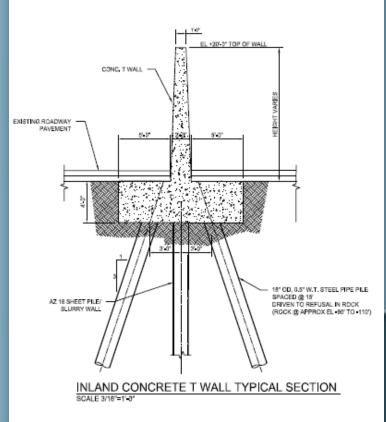
Project Area Two Feasibility Design Height (2050s/500-Year Flood Event) = +20.0ft NAVD88

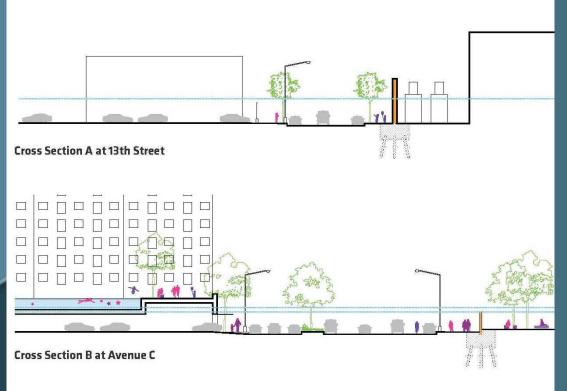
Reach A - Con Edison East River Complex East 13th Street to East 15th Street



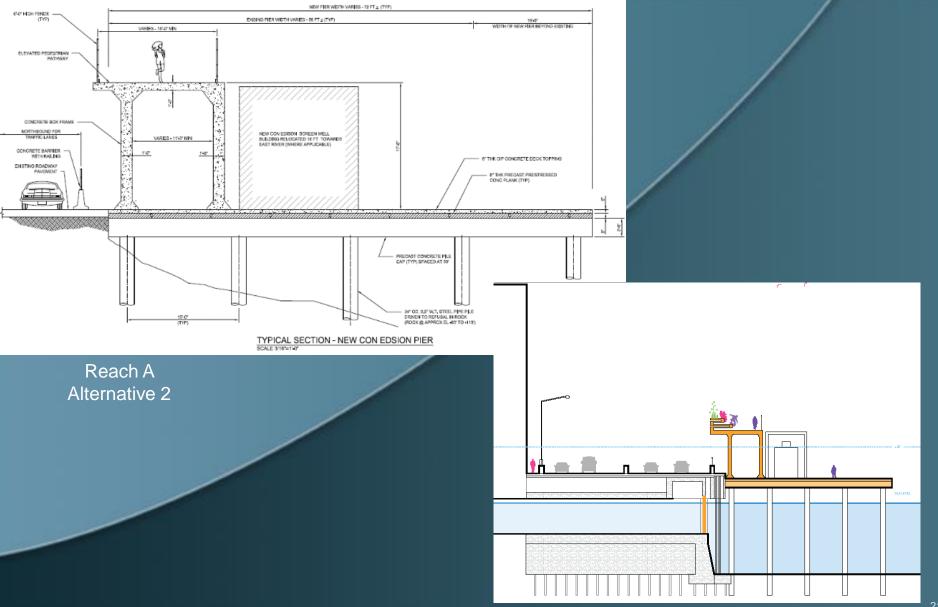
Develop Alternatives

CON-ED RECEIVING PIER


30" NARROWS ALONG CON-ED HEAD HOUSE


Reach A - Con Edison East River Complex Preliminary Alignments

Reach A - Con Edison East River Complex Concrete T-Wall


Develop Alternatives

Reach A Alternative 1

Reach A - Con Edison East River Complex Alternatives **New Con Edison Pier**

Develop

Reach B - Captain Patrick J. Brown Walk East 15th Street to East 18th Street

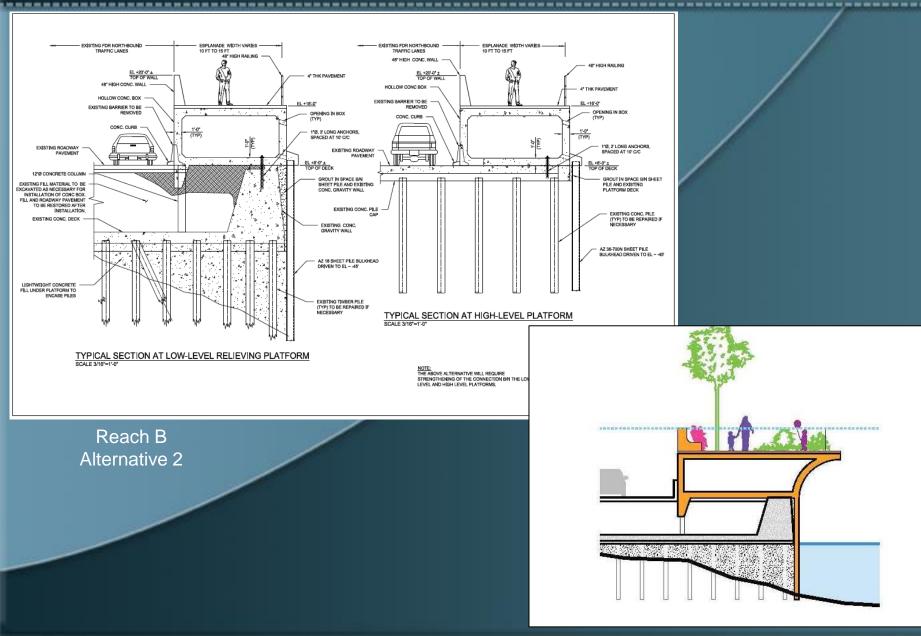
Develop Alternatives

CON-ED PARKING LOT

FDR DRIVE

CAPT. PATRICK J BROWN WALK

DISTANT VIEWS TO U.N. AND EAST RIVER


Reach B - Captain Patrick J. Brown Walk Alternatives **Pile Supported Flood Wall**

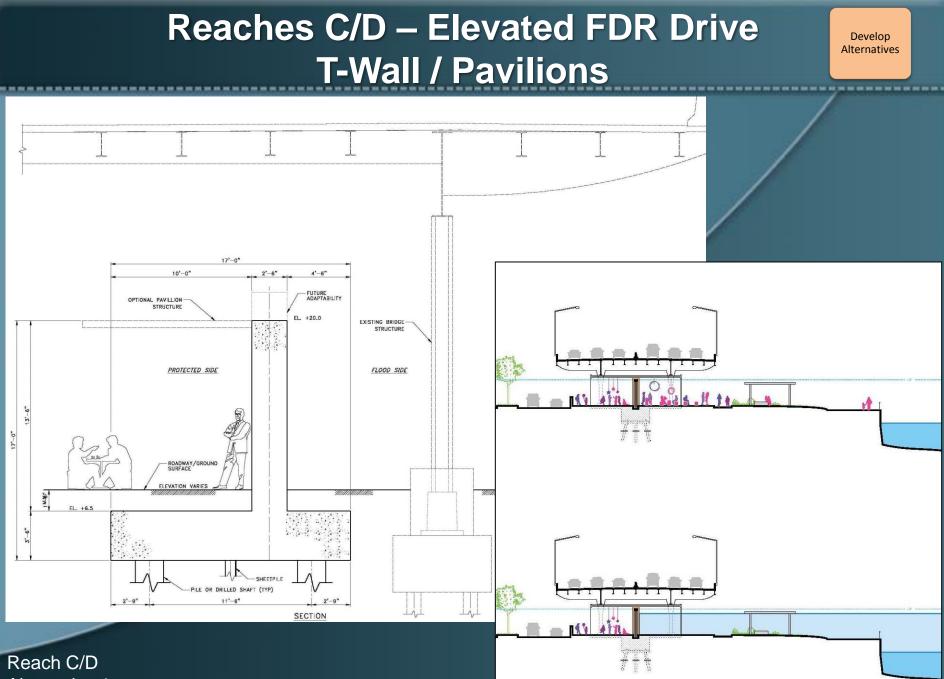
EXISTING FOR NORTHBOU ESPLANADE WIDTH VARIES 10 FT TO 20 FT EXISTING FOR NORTHBOUND ESPLANADE WIDTH VARIES TRAFFIC LANES TRAFFIC LANES 10 FT TO 20 FT 42" HIGH CONC. WALL 42" HIGH CONC. WALL 8" THK PRECAST CONC, DECK EL 20'-0" TOP OF WALL PI ANK 8" THK PRECAST CONC. DECK EL 20'-0" TOP OF 48" HIGH FENCE 48" HIGH FENCE THK CIP CONC. DECK TOPPING 6" THK CIP CONC. DECK TOPPING FASCIA WALL HANGING FROM DECK FASCIA WALL HANGING FROM DECK 2.5 EL 16'-0" EL 16'-0" EXISTING BARRIER EXISTING BARRIER EXISTING CONC. DECK EXISTING ROADWAY DECK TO BE PAVEMENT RESTORED AFTER CONC. PILE CAP CONC. PILE CAP PILE EL 8'-0"± TOP OF DECK EL 8'-0"± TOP OF DECK 6* 6* EXISTING FILL MATERIAL TO BE EXCAVATED AS NECESSARY FOR INSTALLATION OF PILES. FILL AND ROADWAY PAVEMENT EXISTING CONC. TO BE RESTORED AFTER PILE CAP INSTALLATION DECK TO BE RESTORED AFTER INSTALLATION OF PILE EXISTING CONC. EXISTING CONC. DECK EXISTING CONC. PILE GRAVITY WALL (TYP) AZ 18 SHEET PILE AZ 18 SHEET PILE BULKHEAD BETWEEN PIPE PILES DRIVEN TO EL - 45' BULKHEAD BETWEEN PIPE PILES DRIVEN TO EL ~ 45' EXISTING TIMBER PILE (TYP) 30°Ø x 1° W.T. STEEL PIPE 30"Ø x 1" W.T. STEEL PIPE BATTER PILES PILE TO ROCK (W/ 7 LONG ROCK SOCKET) SPACED AT 10/2 (DRIVEN TO REFUSAL IN BEDROCK - BEDROCK APPROX EL -90' TO -110' ±) SPACED AT 10'± TYPICAL SECTION AT HIGH-LEVEL PLATFORM 30°Ø x 1° W.T. STEEL PIPE BATTER PILES (DRIVEN TO REFUSAL IN BEDROCK - BEDROCK APPROX EL -90' TO -110' ±) SPACED AT 10'± 30°Ø x 1° W.T. STEEL PIPE SCALE 3/16"=1'-0' PILE TO ROCK (W/ 7' LONG ROCK SOCKET) SPACED AT 10'± TYPICAL SECTION AT LOW-LEVEL RELIEVING PLATFORM SCALE 3/16"=1'-0" Reach B Alternative 1

Develop

Reach B - Captain Patrick J. Brown Walk Concrete Box Structure

Develop Alternatives

Reaches C/D – Elevated FDR Drive Stuyvesant Cove Park to East 23rd Street



Develop Alternatives

AVENUE C

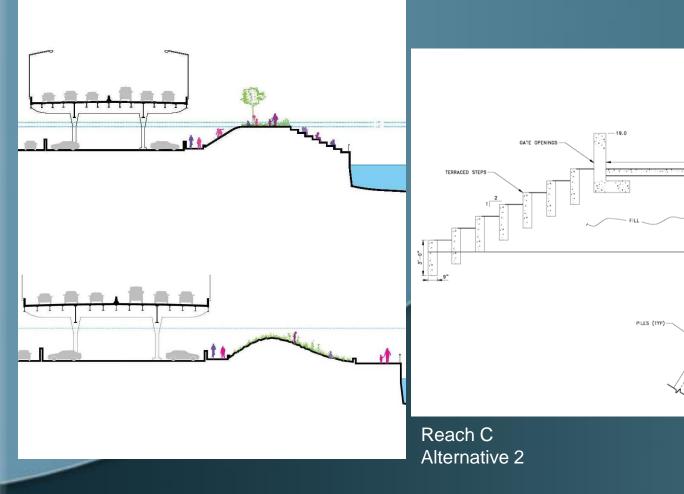
UNDER-FDR

BIKE PATH

Alternative 1

Reaches C/D – Elevated FDR Drive Elevated Park

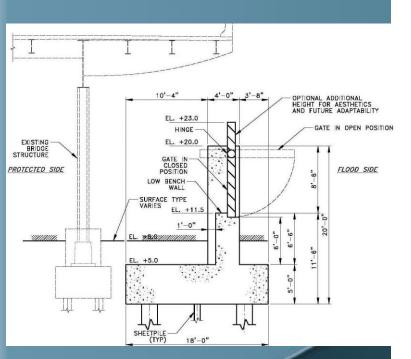
Develop Alternatives


HAND RAIL

-16.0

5'-0

16'-0" MIN.


SHEETPILE

EXISTING

Reaches C/D – Elevated FDR Drive Swing Down Gates

Develop Alternatives

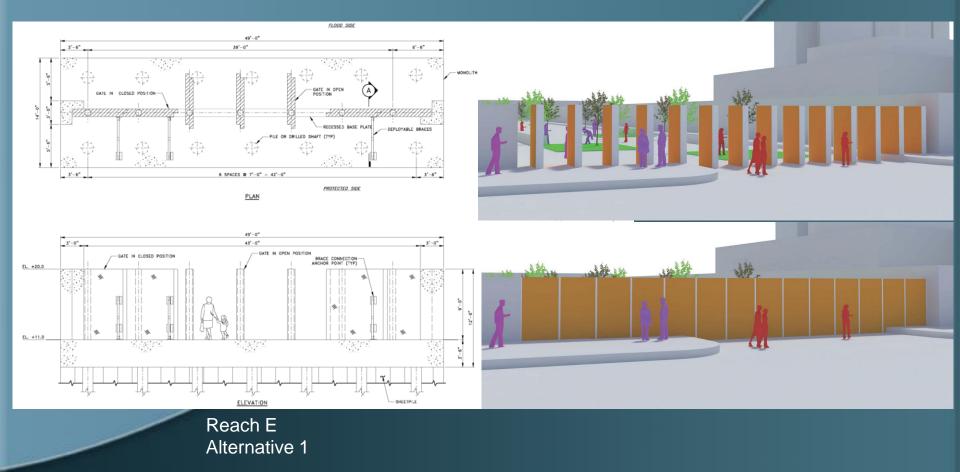

Reach C/D Alternative 3

Reach E - East 23rd Street

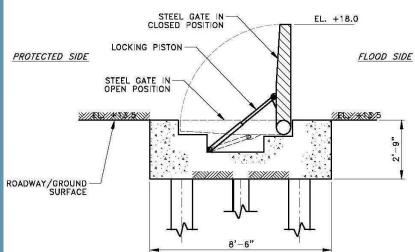
Develop Alternatives

B

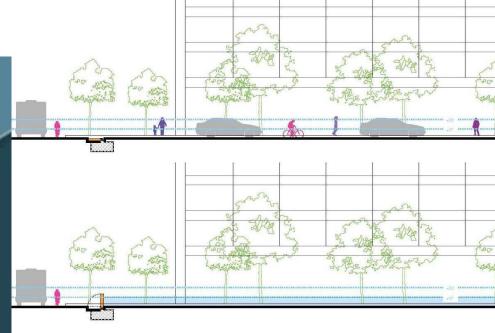
23RD STREET LOOK-ING WEST



ASSER-LEVY PARK FROM ACROSS 23RD STREET


Reach E - East 23rd Street Vertical Fin Gates

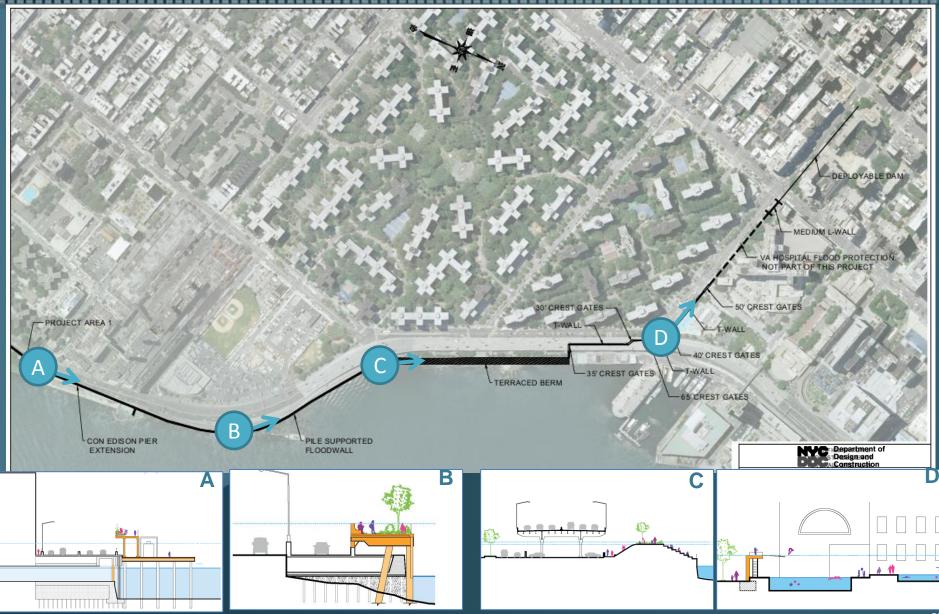
Develop Alternatives



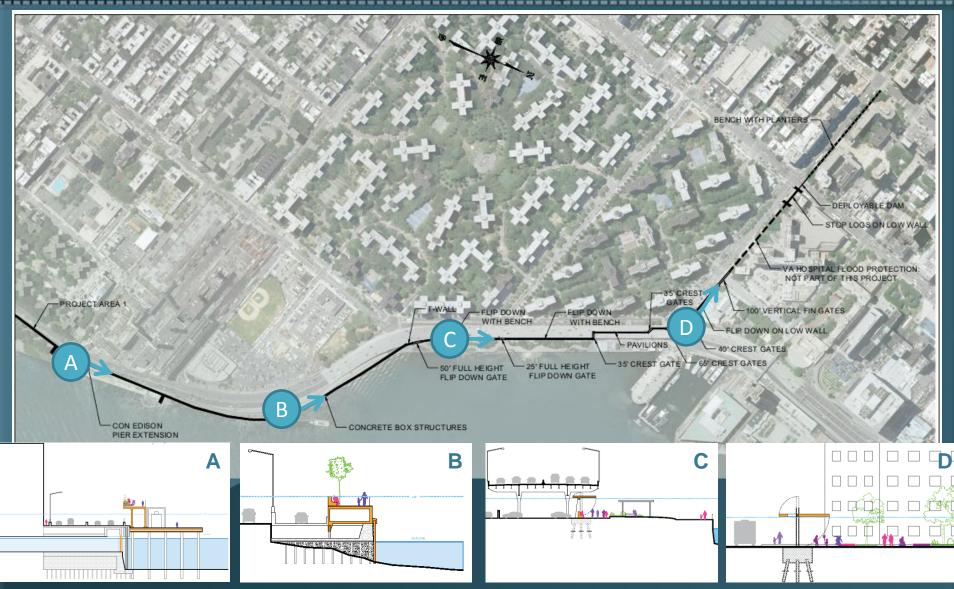
Reaches E - East 23rd Street Crest (Flip-Up) Gates

Develop Alternatives

Reach E Alternative 2


Configuration 1 - Lowest Cost

Develop Configurations


Configuration 2 - Highest Reliability

Develop Configurations

Configuration 3 – Greatest Urban Design Potential

Develop Configurations

Summary of Configurations Evaluation Criteria and Estimated Construction Cost

Configuration	Reach	Reliability	Cost	Constructability	Maintenance	Operations	Urban Design	Schedule	Environment	Opinion-of-Probable- Cost (Low-to-High Range, -25%/+30%)	
	A: Con Edison	3	3	2	4	3	2	3	3	~\$150M (~\$115M - \$200M)	
	B: Cpt Patrick J Brown Walk	3	3	2	2	2	1	3	3		
Configuration 1 –	C: FDR Dr -Stuyvesant Cove	4	3	3	4	3	1	3	3		
Lowest Cost	D: FDR Dr-Peter Cooper Rd to East 23 rd Street	4	3	3	3	3	1	3	3		
	E: East 23 rd Street	4	3	3	3	3	2	3	3		
	A: Con Edison	4	1	1	3	4	4	2	2	~\$230M (~\$170M - \$295M)	
	B: Cpt Patrick J Brown Walk	5	2	2	4	5	4	2	1		
Configuration 2 – Highest Reliability	C: FDR Dr -Stuyvesant Cove	5	3	4	5	5	2	4	3		
	D: FDR Dr-Peter Cooper Rd to East 23 rd Street	4	3	3	4	3	1	3	3		
	E: East 23 rd Street	4	3	3	3	3	2	3	3		
Configuration 1 – Greatest Urban Design Impact	A: Con Edison	4	1	1	3	4	4	2	2		
	B: Cpt Patrick J Brown Walk	2	4	3	3	5	4	2	1	~\$220M (~\$165M - \$285M)	
	C: FDR Dr -Stuyvesant Cove	3	2	3	2	2	4	3	3		
	D: FDR Dr-Peter Cooper Rd to East 23 rd Street	4	3	3	4	3	3	3	3		
	E: East 23 rd Street	3	2	2	3	2	3	3	3		

Summary of Configurations Evaluation Criteria Rating System

Grading System: 0 (Worst) to 5 (Best)

<u>Criteria</u>	Baseline Rating
Reliability	3 -High Degree of Confidence that system will provide protection required.
Cost	3 -Cost relative to the median estimated cost (per linear foot) for proposed alternatives
Constructability	3- Moderate difficulty of construction due to location/constraints/existing infrastructure
Maintenance	3- Maintenance requirements in line with those for similar to standard urban infrastructure elements (e.g. roadways, tunnels, piers, etc.)
Operations	3- Minimal operations requirements prior to storm event (limited personnel action and no specialized equipment required)
Urban Design	2 - No effect on urban realm
Schedule	3 - Moderate level of confidence of timely completion
Environment	3 - No effect on environment

Summary of Opinion-of-Probable Costs 500-year & 100-year Flood Event

Protection Requirement	Design Elevation (surge + SLR + storm induced waves)	Project Area One (Montgomery – East 13 th St) (1,2,4)	Project Area Two (East 13 th St – East 23 rd St) ^(1,3)	Total (Montgomery – East 23 rd St) (1,2,3,4)
2050s/	20ft NAVD88	~\$225M –	~\$150M – \$230M	~\$375M –
500-Year	(13.9ft + 2.5ft + 3.5ft)	\$275M		\$505M
2050s/	16ft NAVD88	~\$175M –	~\$115M – \$190M	~\$290M –
100-Year	(10.9ft + 2.5ft + 2.5ft)	\$225M		\$415M

Notes:

- 1. ESCR Feasibility costs developed are to be considered preliminary only, are characterized as having a wide range, and are not to be considered exact.
- 2. ESCR Feasibility costs include \$60 million allowance in Project Area One for sewer system mitigation measures.
- 3. ESCR Feasibility costs include \$20 million allowance in Project Area Two for sewer system mitigation measures.
- 4. ESCR Feasibility costs <u>do not include</u> construction of new and/or improvement to existing pedestrian bridges (estimated cost between \$5 million to \$10 million per bridge in RBD proposal for a total of \$35M to \$50M).

Use of 2050s 500-year Flood Event Design Criteria Increases Estimated Construction Cost for Flood Protection System (~15% to 25%)

Summary of Feasibility Report

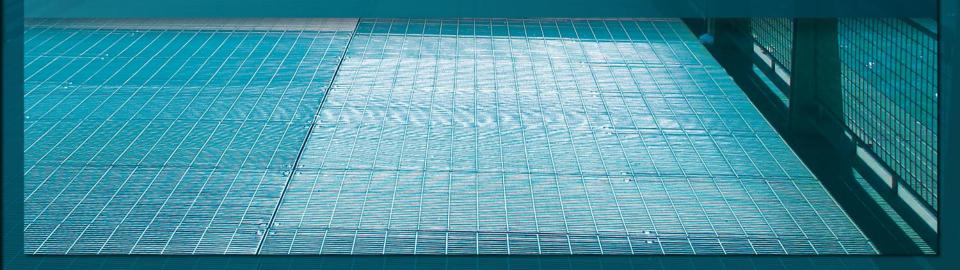
Three technically feasible configurations developed.

Feasibility study reflects 2050s 500-Year flood event design criteria.

Alternatives are scalable (urban design elements, level of protection, climate change).

All configurations include unique and innovative approaches to Urban Flood Protection.

500-Year flood event vs 100-Year flood event design criteria significantly impacts estimated construction costs.


Next Steps Decisions Needed

Storm Event Design Criteria (required from Client Team by 4/14) Interceptor Flow Management (meeting with DEP on 4/16) Project Area Two Authorization to Proceed (required by 4/7) Con Edison Coordination (ongoing) Pedestrian Bridges (confirm inclusion of enhanced/additional connections)

Decision for Design Criteria Needed to Proceed with Conceptual Design for Project Areas One and Two and Maintain Project Schedule

Questions and Discussion

