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Abstract: Reducing water loss through bursts is a major challenge throughout the developed and developing world. Currently burst lifetimes
are often long because awareness and location of them is time- and labor-intensive. Advances that can reduce these periods will lead to
improved leakage performance, customer service, and reduce resource wastage. In water-distribution systems the sensitivity of a pressure
instrument to change, including burst events, is greatly influenced by its own location and that of the event within the network. A method is
described here that utilizes hydraulic-model simulations to determine the sensitivity of potential pressure-instrument locations by sequentially
applying leaks to all potential burst locations. The simulation results are used to populate a Jacobian matrix, quantifying the different
sensitivities. This matrix may then be searched to identify different instrument locations to achieve required goals: maximising overall sen-
sitivity to all potential events or selective sensitivity to events in different network areas. It is shown here that by searching this matrix to
optimize such selective sensitivity, while minimising instrument numbers, it is possible to provide useful burst-localization information.
Results are presented from field studies that demonstrate the practical application of the method, showing that current standard network
models can provide sufficiently accurate quantification of differential sensitivities and that, once combined with event-detection techniques
for data analysis, events can effectively be localized using a small number of instruments. DOI: 10.1061/(ASCE)WR.1943-5452.0000290.
© 2013 American Society of Civil Engineers.

CE Database subject headings:Water distribution systems; Water management; Leakage; Hydraulic models; Field tests; Data analysis.

Author keywords: Water distribution systems; Water management; Leakage; Hydraulic models; Field tests; Data analysis.

Introduction

According to EIRIS (2011), the world is facing climate, energy, and
food crises. However, these cannot be fully discussed without
understanding the impact of water scarcity. It is estimated that
two thirds of the world’s population will live in water-scarce areas
by 2025 (EIRIS 2011). Global demand for water is forecast to out-
strip supply by 40% by 2030 due to factors such as population
growth and climate change (POST 2011). Therefore it is critical
to ensure that water resources are managed carefully and in particu-
lar that losses from pipe networks are tackled. Losses can occur
from many sources; one of these is leakage or bursts arising from
breaks or fractures in water distribution systems (WDSs). Globally,
the level of leakage varies tremendously; in the UK, it is estimated
that leakage from WDSs accounts for 25–30% of the total water
supply. Water is widely considered as abundant in the UK, however
low rainfall in 2011 has lead to concerns about crops and the
potential for drought (Environment Agency 2011). In recent
years, information and communication technologies (ICT), water

system-simulation and modeling-optimization technologies, and
improved leakage control have all progressed to enable water en-
gineers to effectively tackle and reduce water loss (Wu et al. 2011),
however more is urgently needed.

This paper presents a methodology for locating low numbers of
pressure instruments in a WDS to effectively detect and localize
leak/burst events. This is achieved through optimization of the
location of additional instrumentation, in combination with the
existing instruments, to subdivide a system into smaller detection
zones. The work utilizes current UK industry-standard hydraulic
models and is demonstrated for WDSs of differing size and
complexity. Results are presented from field tests using hydrant
flushing to simulate leak/burst events in real distribution systems.
This field validation made use of an automated data analysis
detection system to identify events within time-series data (Mounce
et al. 2010a).

Background

The distribution of potable water to consumers in the developed
world is accomplished via a complex network of pipes. The com-
plexity of WDSs varies tremendously from area to area. In the UK,
and increasingly in other parts of the world (Brothers 2003), WDS
are subdivided into district meter areas or distribution management
areas (DMAs). To measure and assess the performance of these,
WDS instrumentation is installed measuring flow and pressure at
certain locations. These flow and pressure instruments are gener-
ally located at predetermined positions within each WDS. In the
UK, flow and pressure instruments are typically installed at the
inlet (and any outlet) to each DMA and an additional pressure
instrument (referred to as the DG2) is installed at the point of high-
est elevation or another critical point in the DMA. The highest
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elevation is selected to comply with regulations regarding mini-
mum pressure levels in the WDS.

Understanding complex WDSs has historically been hard be-
cause of the difficulty of collecting accurate data. Manual data col-
lection meant that data was analyzed as infrequently as every two
months. However, in recent years, developments in measuring and
recording data have made data collection easier and the use of
telemetry, like general packet radio service (GPRS), has allowed
for data collected from instrumentation to be accessed quickly, with
data now available in near-real time, often at fifteen minute sam-
pling intervals. These advances, together with the availability and
ease of installation of pressure instrumentation, at any hydrant or
other tapping point, provide significant potential for improving the
understanding and management of WDSs. It is proposed that, by
developing an understanding of the sensitivity of pressure re-
sponses across WDSs, potentially important information in regard
to system performance could be gained from increasing the number
of pressure instrumentation devices permanently installed. How-
ever, there are significant capital and operational expenditure costs,
maintenance requirements, and information technology (IT) issues
associated with any instrumentation deployment, hence their num-
ber and locations need to be optimized with demonstrable benefits
accruing.

To identify the optimal number and locations of instruments for
any particular application, such as detection of water-quality events
(Berry et al. 2006), leakage-hotspot identification (Wu and Sage
2008), or hydraulic-model calibration (Bush and Uber 1998), it
is necessary to solve a complex optimization problem. The problem
is complex because there are many possibilities in terms of
potential instrument locations and because the optimal number
of instruments will differ from WDS to WDS. Optimal instrument
placement using hydraulic simulation software has been studied for
different purposes in WDSs. Through the application of hydraulic
mathematical models, simulations can be run in batches and multi-
ple different events can be investigated. However, multiple simu-
lations create a large amount of data that requires analysis. Once
this data is analyzed, the problem of where to situate instruments
for different purposes can be solved. Work along these lines by
Bush and Uber (1998) and Kapelan et al. (2003) demonstrated
methods by which the optimal location of instrument(s) for
calibration purposes can be found. Another field in which optimal
instrument/sensor placement has been widely studied is for the
early detection of contamination events in WDSs (Berry et al.
2006; Janke et al. 2006; Watson et al. 2010). Despite trying to solve
different problems, the principles behind these approaches are
similar, namely utilising hydraulic models and running multiple
simulations of different circumstances. Once simulations have
been run, it is important to search the resultant data in an efficient
and well-thought-out fashion, to find the optimal location(s).
A commonly used search approach in the field is the genetic
algorithm (GA).

GAs are a search procedure based on the mechanics of natural
selection and natural genetics (Goldberg 1989). They are highly
parallel, mathematical algorithms that transform a set (population)
of mathematical objects (typically strings of ones and zeros referred
to as genes) into a new population. They work by combining sur-
vival of the fittest for individual genes; these are then passed on to
the next generation. As the successful (fittest) genes breed over
generations they quickly converge to optimal solutions after exam-
ining only a small fraction of the search space. Mutations and cross-
over are also included in generations to ensure that a string of genes
that may help provide an optimal solution are not lost too early.
GAs and other evolutionary algorithms have been successfully
applied to many complex engineering optimization problems

and extensively for water resources engineering and manage-
ment (Nicklow et al. 2010). They have been widely applied to
water distributions for calibration (Kapelan et al. 2003; Kapelan
and Savic 2009), existing leakage detection (Wu et al. 2010),
and contamination-event detection (Ostfeld and Salomons 2004).
These applications have often led to resultant algorithmic advances.

Research has been conducted in the application of multiple hy-
draulic simulation and GA search approaches to burst-event detec-
tion. A methodology for optimal placement of pressure instruments
for improved detection was first proposed in Farley et al. (2008),
and fully presented with field validation in a real water distribution
system in Farley et al. (2010a). Perez et al. (2009) presented a sim-
ilar method for identifying burst events, however the method was
reliant on heavily instrumenting networks with more than fifteen
sensors and has not been tested on in a real WDS with simulated
or real events. Romano et al. (2011) has used pressure instruments
to localize leak/burst events using an ordinary cokriging technique
(an interpolation technique utilizing a cross-correlated secondary
variable to reduce the variance of the estimation error) and other
geostatistical approaches to successfully locate a series of flushing
events. Thirteen pressure instruments were deployed in a single
DMA, and again this is far from normal practice for real WDSs.
Installation of the number of sensors in each WDS required by ap-
proaches such as Perez et al. (2009) and Romano et al. (2011) is not
currently practical from a cost, management, and IT perspective for
water companies.

Method

The method presented here builds on and develops work by Farley
et al. (2008, 2010a, b), to provide a technique which is able to both
detect and localize burst events within WDSs.

WDSs usually have both flow and pressure instruments installed
in them, but the instrument behavior and approach to data collec-
tion are different. Flow data are averaged and then aggregated, lead-
ing to the data being smoothed (Mounce et al. 2012). Pressure
values are instantaneous values; as a result, some of the subtle var-
iations in pressure may be missed. Flow measurements are usually
taken at the inlet, and are sensitive to all downstream changes. Pres-
sure measurements, however, are sensitive to changes in headloss
along prescribed upstream flow routes only. They are therefore
most sensitive to changes along certain routes and generally most
sensitive to change local to the instrument’s position. Pressure in-
strumentation has been used for the present study (as opposed to
flow), because pressure instruments are significantly cheaper and
can readily be installed in any WDS using any readily available
tapping point such as fire hydrants or wash outs, without the need
for new fittings, excavations, or decommissioning of pipes.

Flow data has been effectively used for event detection, being
more sensitive to leak/burst events than pressure data (Mounce et al.
2011). It is hypothesized that this detection via flow data can be
augmented by pressure data, confirming detection and, if posi-
tioned intelligently, allowing location information to be inferred.
This hypothesis is based on the differential and local sensitivity
of the pressure instrumentation. Fig. 1 shows conceptually how,
for an extremely simple ideal network, differential sensitivity of
instrumentation could be used to provide both detection and loca-
tion information.

To utilize this approach, it is necessary to determine likely in-
strument behavior at different locations with sufficient accuracy to
identify differential sensitivity in real, complex networks. The work
by Farley et al. (2008, 2010a, b) utilized a methodology that pro-
duces such a sensitivity matrix. This was achieved by sequentially
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modeling leak/burst events at all nodes in a model and simulating
the pressure response at all possible instrumentation points. The
main benefit of building on this work is that it has been subject
to extensive validation, including fieldwork using flushing to sim-
ulate burst events.

The major challenge is then to search this matrix to maximize
overall sensitivity, to minimize the amount of instruments to be
added to a given network (ideally complementing existing instru-
mentation), and to provide a maximum number and even size of
detection zones. The search methods previously used by Farley
et al. (2008, 2010b) focused on detection rather than localization.
Hence the methodological development presented here is for an
approach to search the matrix to provide localization information,
requiring the integration of a GA search approach to improve effi-
ciency. Whilst the approach has been developed for application to
WDSs with a DMA configuration, there is no reason why it could
not be applied to different systems (e.g., whole networks or trunk
mains). The hydraulic models used by the method are typical UK
industry-standard models supplied by a water company and no
additional calibration having being conducted.

Assembling/Producing the Jacobian Sensitivity Matrix

The steps in the process of generating the Jacobian sensitivity ma-
trix via hydraulic model simulation are illustrated in a flow chart
in Fig. 2.

New leak/burst events were simulated at every node (represent-
ing every possible leak/burst event location), and the change in
pressure analyzed using

χ2 ¼
X ðPlc − PnÞ2

Pn
ð1Þ

where χ2 = chi squared value; Plc = pressure under leak conditions;
and Pn = pressure under normal conditions. The pressure under
normal conditions is the system modeled with no new leaks
present. The χ2 method provides a good test of sensitivity, as it
compares the change in pressure from the system under normal
conditions to when a leak/burst event has occurred. As it is normal-
ized by the pressure under normal conditions (Pn), this ensures
that events that occur at high pressure are not determined as overly

sensitive. The χ2 values are calculated for every instrument re-
sponse, summated for a 24-h period, and used to populate the
Jacobian sensitivity matrix. In Farley et al. (2010b) it was shown
that the dependence of the method on the diameter of the leak was
minimal, and that results from a standard-size leak were transfer-
able. However, it should be noted that this requires a pressure-
dependent leak function and not simply the addition of a standard
demand.

Searching the Jacobian Matrix

To extract relevant/useful data from the Jacobian matrix it is im-
portant to develop a search technique that is able to efficiently
search large amounts of data. The first stage of this is to define
whether leak/burst events would be detected by possible pressure-
instrument locations. This is achieved by applying a detection
threshold to the data in the sensitivity matrix. The detection thresh-
old is then used to create a binary matrix populated with 1 (indicat-
ing detection) and 0 (indicating no detection).

Fig. 1. (a) Simplified differential response of instrument locations; (b) differential detection resulting from selected instrument locations

Confirm base model and run simulation

Store base data files – ‘normal’ pressure at each node

Write data to appropriate matrix cell

Move to next monitor point

Move to next leak point

Add a leak

Evaluate monitor point by comparing current and normal 

Full matrix populated with every possible instrument’s response  
to every leak/burst event 

Fig. 2. Flowchart of methodology (adapted from Farley et al. 2008,
© ASCE)
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The threshold used to determine detection/nondetection is de-
rived from the hydraulic simulation results; there will be a degree
of uncertainty in this value, as water distribution models are only
representations of the real system (how close to reality is dependent
on model build quality and calibration accuracy) and therefore
subject to uncertainty. To limit the impact of model uncertainty
and to try to ensure model error does not play a role in detection/
nondetection, a model-specific threshold is used. The threshold is
selected as the average sensitivity (taken from the sensitivity ma-
trix) resulting from the model in question. Assuming that the model
has a degree of uncertainty, a sensitivity value that is close to the
threshold response is more uncertain than an instrument which has
no (or very minimal) or strong response. Therefore, it is preferable
to select instruments with very small or very large sensitivities to
changes in pressure, rather than a response close to the threshold.
Consequently an uncertainty band was applied to either side of
the threshold; the aim of this band was to penalize instruments
that have a response close to the mean. The size of the band was
explored to establish sensitivity; percentage uncertainties were
explored as different percentage values (�5, 10, 20, 30, and 40%).
Following extensive testing with a variety of DMA models, 10%
was selected as the penalty function sufficiently accounting for
model uncertainty, but not producing excessive penalty zones. Thus
the matrix that is searched is no longer binary and is populated
with 1 (indicating detection), −1 (indicating no detection), and 0
indicating a response in the uncertain or penalty zone.

Once detection and nondetection (or uncertainty) has been esti-
mated, a method is required by which the location of an event can
be inferred. Table 1 shows how theoretically four distinct zones can
be identified with only two pressure instruments. This is based
upon using two pressure instruments installed within the DMA
and utilizes the flow meter installed at the inlet (Zone D detected
only at the inlet flow instrument), which is consistent with Fig. 1.

An important aim of the search is to find a combination of lo-
cations which subdivide the DMA into evenly sized zones. If all the
zones are equal, then the search areas are of equal size. Size may be
quantified by number of nodes, not necessarily capturing a geo-
graphical area but rather some hybrid of geographical area and net-
work complexity. This effectively provides a useful measure for the
time it would take to pinpoint a leak within a given zone, and it is
actually this that should be equalized. The target zone size for each
DMA is calculated

Tz ¼ NodesTotal=Z ð2Þ

where Tz = target zone size; NodesTotal = total number of nodes in
the DMA; and Z = number of possible zones (this is dependent on
the number of instruments, n). Theoretically the number of instru-
ments per DMA is limited only by the number of potential instru-
ment locations. Therefore, by increasing the number of instruments
per DMA, the number of zones increases, as Z ¼ 2n. For a DMA of
100 nodes with two instruments, Tz ¼ 100=22 ¼ 25. The target
zone size is used in the scoring of possible instrument combina-
tions. How close each zone is to the target will define how well
the combination divides the DMA. Therefore for the example

DMA (of 100 nodes), four zones of 25 nodes would represent a
perfect division.

To search the Jacobian sensitivity matrix an objective or fitness
function was developed, to find the optimal combination of instru-
ments which subdivides the DMA into the most evenly sized zones.
The consequence of applying an uncertainty band is that it acts to
create an additional zone, a fifth zone in Table 1. This zone will be
populated by responses that occur in the penalty zone for one or
more of the pressure instruments. It is particularly desirable to keep
this zone as small as possible; therefore a multiplier was applied to
ensure that it is less favorable for a solution to have a large penalty
zone. The fitness function equation used is shown in Eq. (3). The
decision variable for the GA was the locations of instruments

FF ¼
XZ
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNi − TZÞ2

q
þP × 1.25 ð3Þ

where P = number of event locations that are in the uncertainty
band; and Ni = total number of nodes (events) detected in zone
i. Both Ni and P are evaluated by interrogating the binary (with
uncertainty zone) Jacobian matrix for each set of instrument loca-
tions selected by the GA.

To solve Eq. (3), a genetic algorithm search approach was used.
The software developed for this application utilized the MATLAB
Genetic Algorithm toolbox (Chipperfield et al. 1994). A function
(the objective or fitness function) was written as a. m file which is
then optimized (minimized) by the GA. Note that the number of
instruments is not explicitly optimized as part of the fitness
function.

By increasing the number of instruments within a DMA the
number of zones that the DMA is divisible into also theoretically
increases as Z ¼ 2n. However, in practice it is extremely difficult to
identify multiple (say 6) instrument locations that would allow for
subdivision of a DMA into the theoretically possible number of (in
this case 64) zones. There is a diminishing return on the number,
size, and usefulness of the zones established by adding instruments;
the nature of this trade off is unique to every network. Experience
has shown that larger DMAs (typically ≥800 nodes) can usually
accommodate the installation of three additional instruments but
provide five to seven useful zones rather than the theoretically
possible eight. As the number of instruments and subdivisions in-
creases, the more reliant the method becomes on high model-
accuracy which can often be suspect in reality. Other constraints
on heavily instrumenting DMAs are the cost, maintenance, and
IT overheads. Assigning multiple, say greater than three additional,
pressure instruments to every DMA in the system would be expen-
sive and may not reduce the search time taken by leakage techni-
cians to pinpoint leak/burst events, particularly when considering
the inherent travel time and related operations; therefore this is
unlikely to be practical.

Application and Validation

The application and validation section is divided into two sections:
• Firstly the approach was applied to 14 DMA models to test ap-

plication and explore how evenly these networks were subdi-
vided; and

• Additional pressure instruments were then deployed in a real-
life WDS in the UK, based on application of the method,
and bursts simulated by opening fire hydrants to validate the
DMA sub-division approach.

Table 1. Combinations of Responses for Two Instruments

Instrument

Zone

A B C D

1 Detection Detection Nondetection Nondetection
2 Nondetection Detection Detection Nondetection
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Ideal Application

A set of 14 DMAs was analyzed by the search technique (ignoring
the current instrumentation) to show the application for a range
of DMAs with the method evaluated for subdivision of the
DMA into smaller burst event detection zones. The industrial part-
ner advised restricting the addition of instruments to two as a prac-
tical limit since (potentially) four zones offer a pragmatic, cost
effective solution with present technologies and practices. The
method is extendable so that, for example, three instruments could
render (potentially) eight subdivisions.

The characteristics of the DMA play an important role in the
subdivision of the DMA. Generally, it is easier for larger DMAs
to be divided into four zones, as a result of the size. When the
method was applied to some of the smaller DMAs it was not pos-
sible to achieve four zones. However, if the DMA is smaller, then
the search area is smaller still, and as a result it will not influence
the search time (to find the leak/burst event) significantly. The num-
ber of zones for each of the 14 DMAs in the pilot is presented in
Table 2, together with summary information to provide an impres-
sion of the range of DMA sizes and characteristics.

Table 2 shows that for most of the DMAs used in this pilot it is
not possible to subdivide them effectively into four suitably evenly
sized zones. The characteristics of the DMA influence the number
of zones it is possible to subdivide. Generally a DMA which is
smaller in size divides in to a smaller numbers of zones. Table 2
also expresses the fitness function as a fraction of the number of
nodes; this has been included to offer a comparison between two
DMAs to assess the quality of the subdivision, with a low value
indicating a good subdivision.

Subdivision of smaller DMAs into two zones can be as benefi-
cial as dividing a larger DMA into 4 zones. For example dividing a
DMAwhich is 50% of the size of another into half the number of
zones evenly produces the same size zones. Therefore the time
taken to locate a leak/burst event will be similar. Consequently
being unable to subdivide the DMA into four zones for smaller
DMAs is not crucial. A potential benefit for the water utility com-
pany is that smaller DMAs will need fewer instruments, which will
reduce instrumentation costs.

Practical Constrained Application

The water company that participated in this test wished to keep
their existing instrumentation at the current locations within the
DMA, as they provide important information about system perfor-
mance for which continuous records are required. Using the
method developed, it is possible to include this instrumentation al-
ready situated in the DMA, as well as all other possible instrumen-
tation points. The matrix search was hence adapted to run searches
with and without utilizing the existing instrumentation locations as
fixed points.

In addition to the strategy described for the ideal applica-
tion, three additional search strategies that include the current

instrumentation already in the DMA to varying degrees were ap-
plied to the 14 DMAs as follows:
1. The optimal combination of two instruments determined by

applying the search technique defined above, ignoring the cur-
rent instrumentation (results presented in Table 2);

2. The current instrumentation only (i.e., the pressure instru-
ments at inlet and at the point of highest elevation) with no
additional instrumentation;

3. One of the current industry instruments and one optimally
placed instrument; and

4. One of the current industry instruments (i.e., the pressure in-
strument at the inlet or the point of highest elevation) and two
optimally placed instruments.

Strategy 1 effectively provides the benchmark against which to
judge the best solution from Strategy 2, 3, or 4. A selection of four
DMAs are presented below to illustrate the results obtained from
the application of these strategies; these are the four DMAs that
were then used in the live field trials.

By supplementing the DG2 (critical instrument) with an addi-
tional instrument, DMA A is divided into two distinct zones, with a
small penalty zone (as shown in Fig. 3) following Strategy 3. The
fitness function and fraction obtained are identical to those
achieved by Strategy 1, showing that the current DG2 location
is actually only sensitive to a defined area of the DMA rather than
the majority of the DMA as might be the aspiration for a DG2 as a
crucial instrument. For DMA B, one additional instrument (using
Strategy 3) provides a good division of the DMA into two large
zones and one very small one. However, in this case the DG2
did not provide any value to the subdivision of the DMA and
the fitness function and fraction were worse than those reported
in Table 2 for Strategy 1. This drop in fitness function versus
the small zone obtained by the application of Strategy 4 was
deemed of insufficient benefit when discussed with the water utility
company. For DMA C, the optimal combination was selected as
being obtained by using Strategy 4. This is one of the few situations
were the current DG2 instrument location provides some benefit for
leak subdivision, but the drop in fitness function and fraction when
only adding one instrument is significant. For this DMA using three
instruments (one DG2 and two optimally placed) the fitness func-
tion and fraction are actually improved enough over Strategy 1 to
provide sufficient benefit for installation (as evaluated qualitatively
by the water company personnel). For DMA D, the addition of a
single optimally located instrument (using Strategy 3) enables di-
vision into two distinct zones, obtaining the same fitness function
and fraction as the benchmark Strategy 1. This is despite the DG2
instrument location not contributing a zone of detection. This
shows that the Strategy 1 solution can actually be achieved with
only one instrument.

The division of the DMAs shown in Fig. 3 offer some interest-
ing insight into the strategies. Strategy 2 is generally very poor
for both overall sensitivity, as found in previous work (Farley
et al. 2008), and shows little effective subdivision, as expected.
The division of DMAs A and C offers a lower fitness function

Table 2. Number of Subdivision Areas Achieved for DMAs Used in the Pilot, Based on Using the Optimal Combination

DMA A B C D E F G H I J K L M N

Number of zones 3 3 3 2 3 3 4 3 3 3 3 2 3 4
Fitness function 404 353 534 368 771 351 321 722 568 187 386 367 178 147
Fitness function as a
fraction of number of nodes

0.81 0.79 0.77 1.00 1.11 0.94 0.32 0.95 0.52 0.72 1.14 1.12 0.87 0.55

Total number of nodes 493 448 696 368 693 373 995 760 1091 260 338 328 204 265
Total length of pipe (km) 16.5 23.5 24 30.2 30 17.8 36 27 20 9 14 12.7 6.3 11.5
Min=max pressure (m) 20=71 17=163 27=64 22=80 25=76 6=71 30=76 4=87 15=71 18=98 20=133 21=71 16=76 15=100
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as a fraction of the total nodes score than the division of DMAs B
and D. This is because in both the former DMAs the DG2 instru-
ment is used, however it does not contribute (in terms of creating a
detection zone). As a result, the fitness function relative to the num-
ber of nodes is higher (1.0 in both cases B and D, compared to 0.81
for A and 0.62 for C). DMA A benefited from having its DG2 in-
strument situated at a sensitive point and was therefore able to offer
some subdivision of the DMA. However, the DG2 instrument is not
always situated in a sensitive location and some benefit (in terms of
leak/burst-event detection) may be achieved by moving it (Farley
et al. 2010b). In general the location of the DG2 point has been
shown to be ineffective for leak/burst-event location and detection,
however it can provide other useful WDS data. Strategy 3 has been
used for both DMAs B and D, however the DG2 point contributes
very little in terms of detection and location in these particular
DMAs. Strategy 3 is a viable strategy, however it generally depends
on the DG2 being situated in a sensitive area.

Field validation

Once the instrumentation had been installed in the DMAs, it was
important to test the methodology to see if the actual location of the

real leak/burst events was obtained. Previous work by Farley et al.
(2008, 2010b) and Mounce et al. (2010b) have used hydrant flush-
ing to simulate the effect of a leak/burst events within a DMA to
provide certainty of test conditions and a reasonable timeframe of
event. A mixture of pre-determined and blind hydrant flushings
was used to evaluate the methodology in this paper. In all, eight
events were conducted; these events were created by a water com-
pany technician opening a hydrant at a location within one of the
four DMAs (see Fig. 4). Once the hydrant was open, a volume of
water was allowed to flow from the hydrant (the flow from the hy-
drant flushing was unknown). The first set of flushing locations
were determined by the research team and therefore placed in
known locations. The second set of flushing tests were conducted
solely by the water company, therefore the location of the flush was
not disclosed until after the detection/nondetection and location had
been evaluated. The field trial events ran for a period of at least
12 h, with some running for up to 24 h. The following events were
conducted in the four DMAs:
• DMA A—one blind flushing was conducted;
• DMA B—one blind flushing was conducted;
• DMA C—two blind flushing tests and three events specified by

the research team were conducted; and

Meter 1 Only

Meter 2 Only

Flow Only

Penalty

Inlet

DG2

Optimal

Meter 2 Only

Flow Only

Penalty

Inlet

DG2

Optimal

Meter 2 Only

Both Meters

Flow Only

Penalty

Inlet

DG2

Optimal

Meter 2 only

Flow Only

Penalty

Inlet

DG2

Optimal

(a) (b)

(c) (d)

Fig. 3. Division of sample DMAs: (a) A; (b) B; (c) C; (d) D
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• DMA D—one blind flushing was conducted.
Regular automated data analysis allows the identification of new

leaks as they occur, including smaller events not displaying obvious
surface signs of their presence. Such data analysis can be as simple
as flat-line alarm levels, or use automated profiling for alarm limits.
A more sophisticated way it can be achieved is through intelligent
smart alarms. Recent developments in the field of computational
intelligence variously called soft computing, machine learning, or
data-driven modeling are helping to solve various problems in the
water resources domain. Evora and Coulibaly (2009) presented a
review of recent advances in artificial neural-network modeling of
remote-sensing applications in hydrology. In order for the optimal
siting methodology to be assessed, some form of automated, online
system for analyzing the flow and pressure data was required, i.e., to
determine when a leak/burst event had occurred within a DMA and
evaluate any change at the pressure instrumentation. Mounce et al.
(2010a) describe an online system pilot implemented with a UK
water company using an artificial neural network (ANN) and fuzzy
inference system (FIS) system for detection of leaks/bursts at the
DMA level. This event detection system is not reliant on any spe-
cial hardware or network configuration and produces intelligent
alerts. The automated analysis system is data driven, starting from
the logger units which initiate calls to the telemetry software every
thirty minutes, GPRS signal permitting. The system is designed to
provide detection of bursts and leaks as they occur but not existing
leaks or background leakage. The system provides sensitive detec-
tion of abnormal flow and pressure events and, due to the ANN/FIS
system developed, provides a confidence estimate, in the form of a
percentage, of how unusual the event is together with an estimate of
the burst flow rate that can be very effectively used to prioritize
events and response. This system was operating on the flows
and pressures logged in the case study area for the three month

period of the pilot (January–March 2010) which included the blind
flushing described above, hence online data was used as verifica-
tion for event detection.

Results

Where the ANN/FIS system was operating and data sources were
available, the near-real-time system detected all events providing
a robust confirmation of its ability to detect abnormal flow level.
A more in depth investigation of both flow and pressure alerts now
follows to assess how well the model methodology for division of
DMAs into zones performed.

Table 3 shows that for the three events conducted in DMA C
(Events 1, 2, and 3) all successfully correctly identified the zone
in which the leak/burst event had occurred. There was full agree-
ment between the model-analyzed response and the ANN/FIS sys-
tem determined response for all instruments. Table 3 also shows
that no event in this DMA was detected by the DG2 instrument,
this suggests that this instrument is not optimally placed to detect
low pressure events.

Blind Testing Field Validation

The five blind tests of the method were conducted in four DMAs in
two phases in a one month period and provided a robust test, as the
location and size of the event was dependent on the technician at
the water company. The aim was to make the simulated leak/burst
events as realistic as possible.

The subdivision of DMA A was previously shown in Fig. 3.
A blind flush occurring in DMA A is now used to illustrate results
obtained. The DMA is divided into three zones, shown in Fig. 5,
and events that occur in the yellow area should be detected by the

Fig. 4. Hydrant flushing to simulate burst and detected pressure drop in online data

Table 3. Comparison of the Model-Analyzed and ANN/FIS System Detection for the Nonblind Test in DMA C

DMA Event

Detection on
flow at inlet

Detection on
pressure at inlet

Detection on
DG2

Detection on
optimal 1

Detection on
optimal 2

Correct locationModel AI Model AI Model AI Model AI Model AI

C 1 Yes Yes No No No No Yes Yes Yes Yes Yes
C 2 Yes Yes No No No No Yes Yes Yes Yes Yes
C 3 Yes Yes No No No No Yes Yes Yes Yes Yes

Note: AI ¼ ANN=FIS, short for artificial intelligence.
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optimal pressure instrument. Events that occur in the blue zone will
be detected by the second optimal/DG2 instrument. Events in the
rest of the DMAwill only be detected by the flow meter at the inlet.
The blind test was conducted in the blue zone (in Fig. 5); as a result
it should be detected by the optimal/DG2 instrument. The response
of the instruments is shown in Fig. 5(a).

Fig. 5(a) shows that the event can be successfully located in the
DMA since there is complete agreement between the ANN/FIS de-
tection and model analyzed detection. In this case, automated alerts
for the flow sensor (estimated flush size 6.9 L=s) and DG2 pressure
instrument/sensor were generated. The optimal pressure instrument
has not responded, so this rules out its reporting zone as a potential
location for the event. The flow meter has responded as has the
optimal/DG2 instrument. Therefore the event occurred in the small
zone close to the DG2 instrument from the optimal division of
DMA using two pressure instruments. The correct zone of the
leak/burst event was identified. Table 4 summarizes all five blind
tests.

Table 4 shows that there was complete agreement between the
model-analyzed detection and ANN/FIS detection for Event 4 in
DMA A, Event 5 in DMA B, and Event 7 in DMA C. In the case
of Event 5, the event was conducted close to the inlet. Throughout
the use of the modeling methodology adopted such events have
proved difficult to detect and, as a result, the zone close to the inlet

are generally flow-only zones. In the case of Event 6, three of the
instruments used in this field work have agreement between the
model-analyzed and actual response for DMA C. However for
the methodology to be successful, all instruments need to agree.
Consequently the location of this event was incorrectly attributed
to the wrong zone in this DMA. For Event 8, the correct zone was
not identified. As predicted in Table 4, the DG2 location did not
detect the engineered leak/burst event. This shows that the DG2
location is not the most sensitive for detection of leak/burst events.

Discussion of Flushing Test Results

The results from the flushing tests conducted in the five DMAs were
generally positive. There was total agreement in the researcher-
defined test conducted in DMA C (Table 3), with the correct zone
being identified each time. Three out of the five blind tests pro-
duced exact agreement between the model-analyzed and actual
response, and therefore the correct zone of the leak/burst event
could be identified. In the other two events, factors beyond the
control of this methodology led to the incorrect zone being iden-
tified. There was a large difference between the modeled and ac-
tual normal (nonevent) pressures in DMA D; this reflects common
issues with reliability of models. Tests in DMA D were further

Optimal 
pressure 2

DG2

Detection by flow 
only

Detection by flow and 
optimal pressure

Detection by flow 
and DG2

Flush

Meter 1 only

Flow Only

Penalty

Meter 2 only

Optimal

DG2

(a) (b)

Fig. 5. Example of how the method can be used to subdivide a DMA, using DMAA: (a) response of instruments to events and detection type by area;
(b) model-predicted response zones

Table 4. Comparison of Model Predicted and ANN/FIS Detection for Blind Test Events

DMA Event

Detection on
flow at inlet

Detection on
pressure at inlet

Detection on
DG2

Detection on
optimal 1

Detection on
optimal 2

Correct locationModel AI Model AI Model AI Model AI Model AI

A 4 Yes Yes No No Yes Yes No No N/A N/A Yes
B 5 Yes Yes No No No No No No N/A N/A Yes
C 6 Yes Yes No No No No Yes No Yes No No
C 7 Yes Yes No No No No No No No No Yes
D 8 Yes ND No ND No No No Yes N/A N/A No

Note: ND indicates no data was available for this instrument at this time.
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hampered, as two instruments were not working during the period
of the blind tests. One instrument was the flow meter and therefore
it was not possible to determine the size of the event. For Event 7,
conducted in DMAC, the pressure instruments failed to detect this
event, when the model predicted they should do so. This is likely
to be down to the small size of the leak/burst event, thus making
the pressure change difficult to determine. Farley et al. (2010b)
showed that smaller leak/burst events (typically less that 1.5 L=s)
are more difficult to detect.

The instrumentation was installed in the DMA for a consider-
ably long period of time (approximately 3 months). During this
period, the ANN/FIS online system was analysing pressure and
flow at all instrument points (where instrumentation operation
and communications allowed). In this period a number of ghost
detections were recorded at pressure instruments. Ghost detections
are more common when using pressure time-series values for de-
tection, as pressure fluctuates much more than the flow in the sys-
tem. If the pressure instruments were to be used solely to detect
leak/burst events, this would be of concern and potentially lead
to the revision of the detection bands (parameter settings) of the
analysis system. During the period of the pilot only 5% of ghost
alerts were encountered for flow analysis compared to 38% for
pressure analysis demonstrating that the flow signal is much more
reliable for event detection [see also Mounce et al. (2011)]. How-
ever, when flow is used first to determine detection, the pressure
instruments can then potentially be used to determine location.
For six of the eight events, the correct zone in which the leak/burst
event had occurred was identified when both flow and pressure in-
struments were used.

The first set of known events were all conducted in areas where
a response from the optimally placed instrument would occur, and
as a result were successfully located. As the locations of the blind
tests were not preselected, for research purposes, a number of the
events were conducted close to the inlet at low flow rates. From a
water company’s perspective this is ideal as it will cause a mini-
mum impact on the pressures in the system. However it meant that
the majority of events were conducted in flow-only detection zones.
Therefore the pressure instruments’ ability to detect was not com-
prehensively tested. Only two of the blind events were conducted in
zones that would be expected to achieve pressure detection. Of
these two events, one was successful. The failure to detect the other
event can be attributed to the low flow rate of the event, which did
not cause a large change in pressure at the optimally placed pres-
sure instrument/sensors as anticipated. The hydrant flushing was
useful to allow for further testing of the methodology in a real
world environment and to develop an understanding of how data
analysis systems and optimal methodology (for detection and lo-
cation) can operate together.

Conclusions

1. A method, based on GA optimization of a Jacobian sensitivity
matrix derived from hydraulic model simulation results, that is
able to detect and reduce the search time for finding a leak/
burst event(s) by subdividing a DMA has been presented with
the following features:
• Practicality, having been developed and tested with input

from the water industry;
• Requires only a low number of instruments;
• Utilizes current industry-standard hydraulic models with a

pressure-dependent leak function and with previous valida-
tion having demonstrated independence of leak-size dia-
meter; and

• Allows integration with an appropriate event-detection sys-
tem (an automated ANN/FIS system was used in this
study), enabling the potential for further development as
an online sub-DMA location system.

2. The methodology has been successfully applied to a number
of DMAs as part of a verification and validation scheme in a
real WDS in the UK using pressure and flow data.
• Verification was conducted on 14 DMA models illustrating

sub-division for a range of DMA characteristics; and
• Validation was carried out with a total of eight events (hy-

drant openings) conducted in four DMAs. Three of these
were in known locations (selected by the research team)
and five in blind locations (selected by a water technician).
a. Six events were correctly localized to sub-DMA areas

of the DMA;
b. One event was inaccurate due to an error in the

model; and
c. One event was inaccurately predicted, this is likely to

be due to the small size of the event.
3. A field-verified and validated methodology has been presented

in this work offering a practicable method to greatly reducing
the time taken for leak/burst events to be located. Such ad-
vances are essential to the urgent need for water loss reduction.
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