

CEA - CALM Energy - Infratech

- **Expertise:** Development and best practice integration of "smart", artificial intelligence based network control and management capabilities for water utility corporations
- <u>Services:</u> CALMWATER offers water utilities customized Smart Utility Management (SUM) Platforms, which are adapted to effectively support these corporations in their data flow processing and management using artificial intelligence, expert systems, experience based machine learning and intelligent sensing technology solutions as a competitive advantage for upgrading the reliability, security, safety, resiliency and efficiency of their drinking water supply and treatment systems.

Adapting electric smart grid and intelligent nuclear sensing technology to meet water utility needs

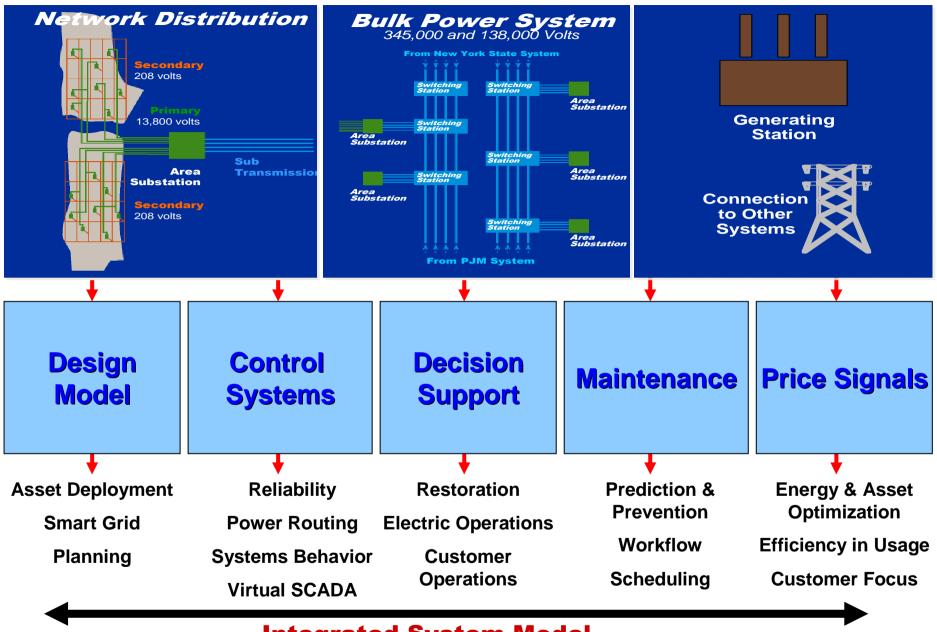
 Demonstrating that the deployment of smart grid with multi-parameter spot measurements and redundancy of data throughout the network increases the reliability of an early detection system and enables its systemic implementation.

Bio-Smart Approach

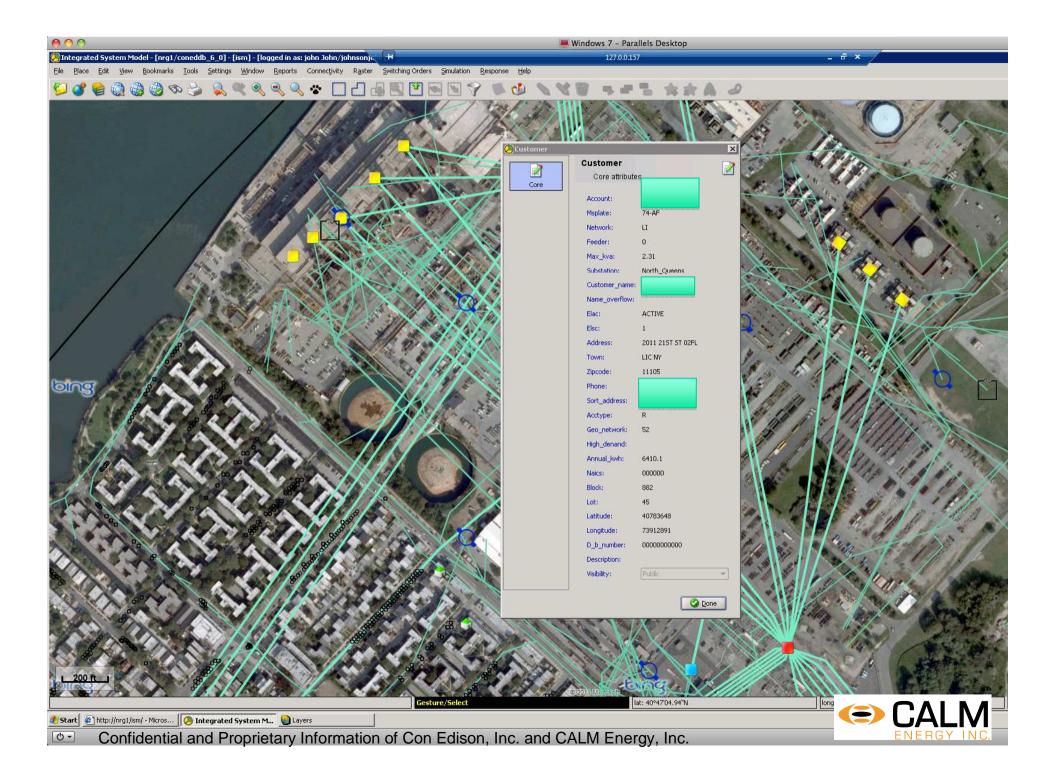
- Early Detection
 - System Requirements
 - Signals/Data characteristics
 - Looking at sensor, spot, and in network propagation for early anomaly detection, confirmation, and scale
- Optimization of mitigation
 - Time dependent zoning detection & public information
 - Based on the confidence level recommend testing or action
 - Indicating monitoring versus system anomaly
 - Identified requirements

BioSmart - What we do

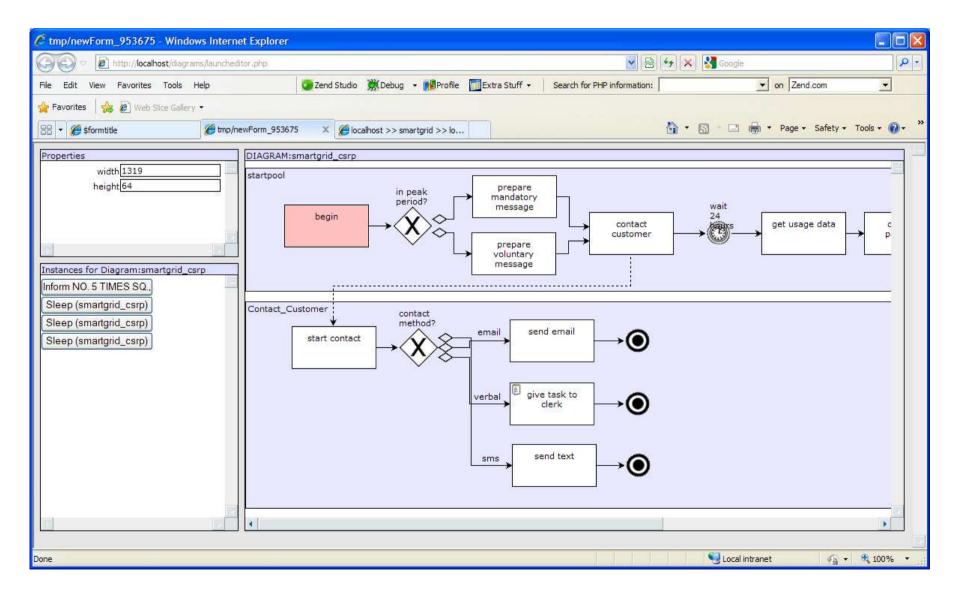
- Support system requirements
- Network instrumentation Multi-parameter


– Network based Optimization

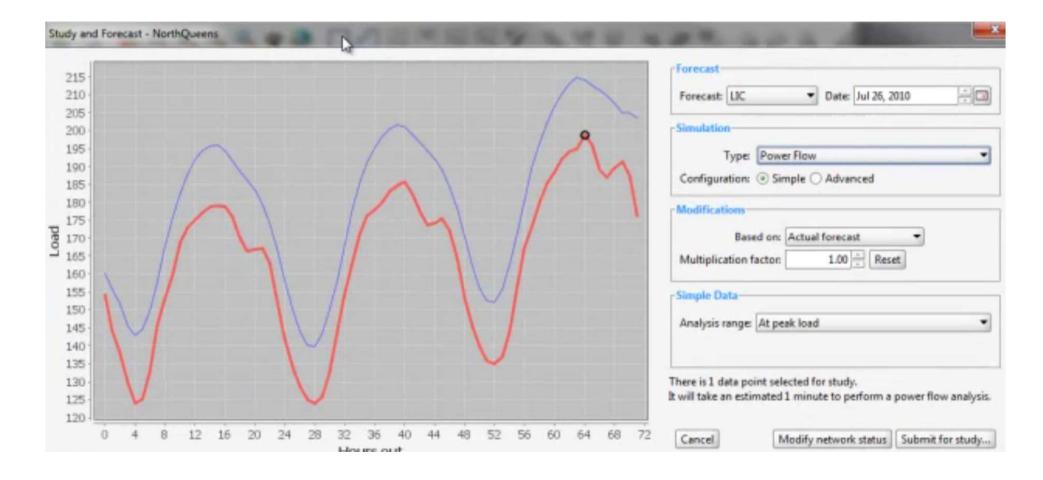
- Risk assessment procedure applied QRMA
- Smart early detection system development
- Off-line demo-simulation
- System assessment and recommendation for pilot testing


CALM Early Detection System Development

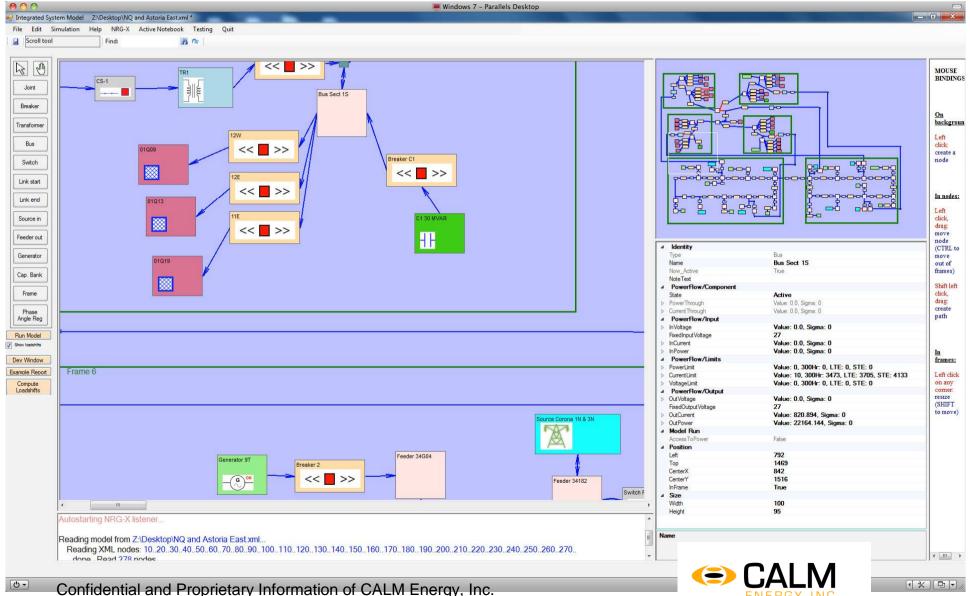
- How do we define the system Intelligent Enterprise platform – CALM Water
 - Integrated System Model
 - Common Information Model
 - Business Process Rules Model
 - Learning/AI Algorithms
 - Integrated Decision Support
- Artificial Intelligence sensing technology CEA

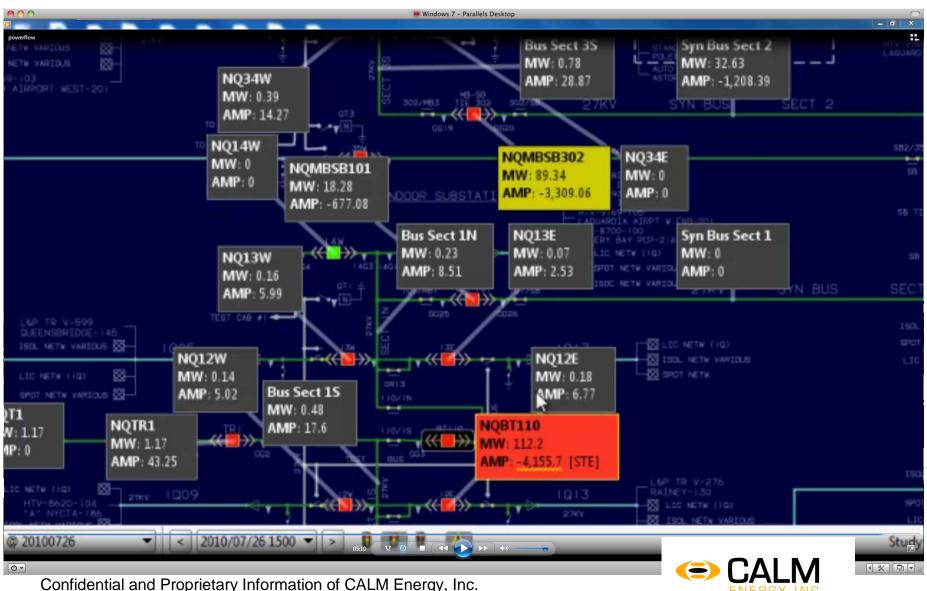

Integrated System Model

By using the same decision aid for normal and emergency work, the system will be more prepared and accurate to support emergency situations



Task Orchestration


Forecasting and Study Request Console



Confidential and Proprietary Information of CALM Energy, Inc.

Simulator

Violation at NQ BT110

SCADA Transmission & Substation Real Time Supply and State	GIS Equipment connectivity and location	SCADA Distribution Real Time Supply and State	Customer Customer Real Time Supply and Usage	Field Forces Real Time Location of Crews/Trucks	Weather Real Time & Forecasted Data Stream	External Real Time Notifications
<u>Input</u> Breaker Open/Closed Flow on Feeders Flow from Generation Voltage/Alarms	Connection of Equip	<u>Input</u> NWP Open/Closed Flow on Feeders Flow from Generation Voltage/Alarms	Input Customer Information NWP Breaker Position Metering Flow Distributed Resources Voltage/Alarms	Input Trucks/Crew Location Job Assignment	<u>Input</u> DTN – Weather Local Indications	Input ISO Notifications Government Not.
<u>Data Source</u> SCADA/EMS System Via PI	<u>Data Source</u> Vision Databases	<u>Data Source</u> RMS SCADA	Data Source CIS Data Cuflink Data Monthly Metering Real Time Metering Open ADR	<u>Data Source</u> GPS Data Job Assignment System	<u>Data Source</u> Weather Sensor Data Weather Data	<u>Data Source</u> Real Time Entry PI – Emergency Not.
	ISN	1 Managen	nent of Rav	w Data Sou	rces	

Next Steps

Planning – Assumed 6 weeks

- Support system requirements
 - Decision making process Rules/Processes
 - Information Sources
 - Actionable results
- Data configuration plan
- Site topology and characteristics

Testing – 3 Months – Time based on others

- Test site Data capture
- Additional testing

<u>Algorithm exploration and testing – 4 Months</u>

	Month																	
Task	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.
I – Industry Platform																		
for B testing																		
I.1–Con-Agreement																		
I.2 – Users' Require																		
1.3 – Tech Ass & Adapt																		
II – Site Instrument &																		
ß testing																		
II.1 – Site Char & Instr																		
II.2 – Data Proc & Anal																		
II.3 – Utility ß testing																		
III – Adapt & Demo–																		
simulate proto-systems																		
II.1– Adapt SG solutions																		
II.2– Pilot Demo-plan																		
II.3 – Demo-simulation																		
II.4 – Outcome Assess																		
Workshop																		
IV – Tech Assessment																		
& Prof. Training																		
IV.1 – Tech Assessment																		
IV.2 – Prof Training																		
IV.3 – Standard Support																		
V – Reporting &																		
Project Management																		
V.1 – Outcome Report																		
V.2 – Project Mgmt.																		

Work Package / Task	WP Lead Institution	Deliverables	Allocated Budget (k€)		
			g ()		
WPI – Industry Platform &	W-SMART		40		
Users Requirements					
I.1 – Consortium Agreements	W-SMART	D1 - Consortium Agreement	5		
I.2 – Users' requirements	W-SMART	D2 – User Requirements	10		
I.3 – Tech Assess & Pre-Qual	KWR		25		
Allocated Budget	Run		40		
WPII – Utility ß Testing	KWR		305		
Sites: USTL & VITENS			505		
II.1 – Site Character &	USTL &	D3 – GIS based info-system	115		
Instrumentation	VITENS	D4 – Instrumentation Report			
II.2 – Data Process & MQRA	KWR &	D5 – Data Analysis & Risk	90		
Tools Integration	USTL	Assessment Tools – Report			
II.3 – β testing including standard	KWR &	$D6 - \beta$ Testing Report	100		
testing, multi-sensor systems &	Utilities				
selected technology solutions					
Allocated Budget			305		
WPIII – "Bio-SMART" system	CW & CEA	D7 – BIO-SMART system(s)	315		
Adaptation & Demo-simulations	& Utilities	Demo-simulations Report			
III.1 – Adapt SG solutions	CW & CEA		95		
III.2 – Pilot Demo-planning	CW & CEA		45		
III.3 – Utility Demo-simulations	CW & CEA		130		
III.4 – Outcome Assessment	KWR &	D8 – Workshop Proceedings	45		
	Utilities				
Allocated Budget			315		
WPIV – Technology Assessment	USTL,		60		
Prof. Training & Standard Sup.	KWR, WS				
IV.1 – Tech Assessment	W-SMART & Utilties	D9 - Utilities' Assessment Report	20		
IV.2 – Professional Training for	USTL	D10 – Bio-Monitoring Training	25		
Monitoring systems		sessions for the Utilities			
IV.3 – Standardization Support	KWR		15		
Allocated Budget			60		
WPV – Reporting & Project	KWR &		50		
Mgmt.	W-SMART				
V.1 – Outcome Report & Recom	W-SMART	D11 – Final Report with	20		
for pilot scale system architecture		Industry Recommendations			
V.2 – Scientific Quality Control	KWR		5		
V.3 – Project Mgmt.	W-SMART	D12 – Interim Progress Reports	25		
Allocated Budget			50		
Total Costs of Project			770		